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Abstract

The dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated by
considering the viscoelastic properties of the material. Based on von Karman’s nonlinear deformation theory and
Boltzmann’s superposition principle, nonlinear and hereditary type governing equations are derived through Hamil-
ton’s principle. Finite element analysis and the method of multiple scales are applied to examine the effect of large
amplitude on the dissipative nature as well as on the natural frequency of viscoelastic laminated plates. Numerical
experiments are performed for the nonlinear elastic case and linear viscoelastic case to check the validity of the pro-
cedure presented in this paper. Limitations of the method are discussed also. It is shown that the geometric nonlinearity
does not affect the dissipative characteristics in the cases that have nonlinearity of perturbed order. © 2002 Elsevier
Science Ltd. All rights reserved.

Keywords: Nonlinear vibration; Viscoelasticity; Method of multiple scales; Composite plate

1. Introduction

When polymeric matrix based composites are used for structural components such as graphite—epoxy or
glass—epoxy, viscoelastic behavior is expected due to the time dependent properties of the matrix. Especially
in a certain environment of high temperature and/or high moisture, the viscoelastic motion of the polymer
becomes prominent and cannot be neglected in structural analysis. For more accurate prediction of the
structural behavior, many researchers incorporated the time dependent property of the material into their
field of studies. In this study, geometrically nonlinear analysis of a laminated composite plate undergoing
moderately large deflection is carried out considering the time dependent behavior of the polymer matrix. A
lot of literatures are available on the large deflection of the elastic system and most of them treat the
nonlinear to linear frequency ratio at a given deflection order as a main topic. However, very few inves-
tigations have been made to account for the effects of geometric nonlinearity on the damping characteristics
of structures (Sathyamoorthy, 1996). For the viscoelastic system, it is necessary to examine the variation of
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dissipative nature as well as the frequency ratio in the presence of considerable damping due to the vi-
scoelastic material property.

There are a few studies dedicated to geometrically nonlinear analysis of a structure that consider the
viscoelastic material property. Vinogradov (1985) investigated the creep phenomenon of a viscoelastic
column and showed that geometrically nonlinear analysis presents no infinite increase in deflection after
creep buckling, which is not the case in linear analysis. Aboudi (1991) analyzed the postbuckling behavior
of viscoelastic laminated plates. The time dependent postbuckling behavior was presented, and results
based on different theories of plates were compared with one another. Marques and Creus (1992) dealt with
the nonlinear finite element analysis of viscoelastic composite structures considering the effect of moisture
and temperature. Results show the time dependent deflection under mechanical and hygrothermal loads.
Fung et al. (1996) studied the dynamic stability of a viscoelastic beam subjected to harmonic and para-
metric excitations simultaneously, and showed variation of stability boundaries when the nonlinear effect of
deformation is included in the analysis.

In the present study, governing equations are derived from Hamilton’s principle using the von Karman’s
nonlinear theory of plates and Boltzmann’s superposition principle for linear viscoelastic constitutive law.
In addition, the first-order shear deformation is considered in the displacement fields and to express the
viscoelastic material properties, Prony—Dirichlet series are employed for approximation. The nonlinear and
hereditary type governing equations are treated with the finite element method and method of multiple
scales. Verification and limitation of the present approach are discussed by comparing results with those for
nonlinear elastic and linear viscoelastic analysis. It is attempted to solve all coupled equations simulta-
neously, for the hereditary characteristics of the equations make it difficult to decouple the flexure motion.
Numerical examples are presented and discussed as demonstrations.

2. Formulation

Fig. 1 shows the geometric configuration of a rectangular plate undergoing moderately large amplitude
vibration. In the first-order shear deformation theory, the displacement fields are assumed as

Lu(x,y,z, t) = u(x,y, t) +Zl//x(x7y7 t)7
ur(x,y,2,t) = v(x, y, 1) + 21, (x, 3, 1), (1)
u3(x7yazv t) = W(xvya t),

Fig. 1. Geometric configuration of a laminated composite plate.
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where u;, u, and u; are the components of the three-dimensional displacement vector in the x, y and z
directions respectively, while #, v and w denote the displacements at the mid-plane, and ,, , are the
rotations of the normals to the mid-plane about the y and x axes. '

The strain—displacement relations based on von Karman’s theory of plates can be written as

& =uy+zy, + wi/Z,
& =v,+2y,, + wi,/Z,

&3 =1U, + Ux + Z(lpxty + l/Jyﬁ)c) + WiWy, (2)
&4 = l//y +wy,
85 = l//y + W,.’C?

where contracted notations are used for engineering strains.

As the viscoelastic constitutive law, Boltzmann’s superposition principle for linear viscoelastic behavior
is employed. The stress—strain relation at the kth layer, which has the orientation angle of 6,, is given in the
hereditary type form as follows:

t
k —k .k .
o/ (t) = . 0,(t—s)&(s)ds, i=12,....5, (3)
where the repeated index stands for the summation rule, and Qi(t) is the relaxation function at the kth layer
referred to x—y coordinates, which are obtained from the axis transformation of the relaxation modulus
0;;(t) referred to the principal material axes. In terms of generalized displacements and forces, constitutive
relations are written in the following convolution form as in Cederbaum et al. (1991),

Nyx An A Az Bu B Bi Uy T W W

Nyy Ax»  An B Bn B . Dyt wuw, )

Ny | _ Az Bis By By | Uy £ 0x FWWy +WaWy )
Mo [ Dy D Dy ‘/(x,x

M,, SYM Dy Dx v,

My Dy Vi +

and

Ow | _ K Ass Ass . lﬁ} +w, ’
O Ass  Ass W+,
where the overdot stands for the time derivative, * denotes the convolution operator and K is the shear

correction factor.
Time dependent functions 4;;(¢), B;;(t) and D;;(¢) are defined by

B2
(45(0).B,0.D,(0) = |~ Ty()(1.z.)dz ij=123,
—h)2
"o )
Ay(1) = /m 0,(t)dz i,j=4,5.

The equations of motion are derived from the extended Hamilton’s principle for the nonconservative
system:
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/tz(BT —SU)dr =0, ©

4

where 87, dU are variations of the kinetic energy and the virtual work by the internal forces respectively as
are given by

8T = | {lo(itdi + 980 +wdw) + LY, 8, + ¥, 8,)} dxdy,

Area

oU = {Nec (Bt + W dw ) + Mo S, + N,y (Svy, 4wy, dw,) + M, oy, , (7)

Area

+ Ny (Suy + 80 +w, 0w, +w,, 0w,) + Mxy(&//w + 61//}“)
+ V(8 + dw) + V(8 + Sw,) } dxdy

with inertial terms 1y, I,, resultant forces N,s, ¥, and moments M,; for o, f = x, y being defined as

/2
(o, 1) = / p(1,2)dz,

/2

/2
(Nuws Ny Nogs Vi, V) = / ot o ot (8)

h/2
(M, My, M) = / z(a}, 0%, 0%) dz.
—h/2

We again use contracted notations for stress as in the case of strain.

Interpolating displacement and rotation fields in terms of nodal values and substituting them into Egs.
(2), (3) and (6), one can obtain the following discretized nonlinear governing equations

6 t
Mx + ) / 0i(t — s)Kxds = 0, (9)
i=1 /07

where x is the global nodal vector, M is the mass matrix and K; are the matrices that have stiffness O, as
coefficients. In addition, contracted indices are used for relaxation moduli referred to the principal material
axes as Oy = 011, O» = On, O3 = On, 04 = 03, Os = Qu, and Qs = Oss. In addition, K;,... K, are
transverse displacement dependent matrices, while shear deformation dependent matrices Ks and K¢ are
constant. They can be written as

K=K +K +K i=1,....4,

10
K =K' i=5,06, (10)

where K is constant and K}, K; are the linear and quadratic functions of transverse displacement w re-
spectively.

3. Method of analysis

The relaxation moduli Q;; referred to the principal material axes are expressed in terms of Prony—
Dirichlet series, which is one of the most widely used models for approximating the viscoelastic behavior of
a material. Hence, neglecting the variation of temperature and moisture, any relaxation modulus can be
assumed as
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Ni
Oi(t) = 0¥ + Y _ Olexp(—d/t) = 0,(0)fi(t) fori=1,2,...,6 (not summed on i), (11)

J=1

where N; is the number of exponential terms required for approximation, O the final stiffness of O;(¢), 0l
constant coefficients, ¢/ (>0) relaxation parameters, and f;(¢) is the time function that yields unity at = 0
and characterizes the relaxation phenomenon.

Substituting Eq. (11) into Eq. (9), one gets a set of nondimensional equations by introducing parameters
such as u/h, v/h and w/h:

6

__ i _—
50 ; 8 0;(1 — s)KXds =0, (12)

where the overbar denotes the nondimensional value. Also, nondimensional time is defined by t = wpyt
with @y meaning the linear undamped frequency.

3.1. Linear analysis

Using the substitution method developed in Muravyov and Hutton (1997), Eq. (12) can be formulated to
the eigenvalue problem through analytical evaluation of the integration term, which is made possible by
introducing exponential series representation for both the relaxation moduli and solution. In other words,
the solution is assumed as

M(N+2)

X= Y cadexp(p), (13)

=1

where M is the number of degrees of freedom, N is the total number of distinct exponential terms used in
moduli approximation, ¢, is a complex vector, and ¢;, p; are complex constants. Since K, are constant
matrices in linear analysis, the integration in Eq. (12) can be calculated analytically by substituting Egs. (11)
and (13) into Eq. (12). Noting K; are constant matrices, one obtains

M(N+2) 6 . 1 M(N+2) 6
> [Cl{p1M+ Z( 7K+ 0K Y I+W>}¢JGXP(PIT] ~ 010y ;

=1 i=1 Jj=1 I=1

30 P exp(—ft) =0, (14)

=1 Pi +n;

where the relaxation parameters are normalized by the corresponding linear undamped frequency, or
1, = d! Jory. To satisfy Eq. (14), all coefficients of exponential functions can be set to zero to yield

o 1 6 o . N; p

3 00 j !

M+ —— 0*K; + 0K, Y, =0 1=1,2,... M(N+2), 15.1
{l Ql(o);< ;pz ’7{ ! ( ) ( )
M(N+2) Clpl . .
Y ——=¢,=0 j=12,...,Ni=12...6 (15.2)
=1 pl+’71

The eigenvalue problem is derived from Eq. (15.1) as follows. By multiplying to Eq. (15.1) a common
multiple of denominators of Eq. (15.1), one gets
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o 1 6 6 N 1 6. N e
2 oc J ! nm
M+ —= > OrK (P +m,) + OiK; p L
i o T+ g & S ow [T o
=0 /=12,....M(N+1). (16)
Denoting the matrix coefficients of p)'*?, pﬁv“, ...,p) in Eq. (16) as By,2,By.1,..., By respectively, the
eigenvalue problem equivalent to Eq. (16) is obtained as
B, B, B; ... Byo B, 0 0 ... 0 o,
I 0 0 ... 0 0 -1 0 ... 0 pid,
2
pl0 1 0 ... 0 [+]0 0 -I ... 0 p,¢1 =0. (17)
o o ... I 0 o o o ... -I P,

Now, the total number of M (N + 2) unknowns ¢; are determined by solving the following simultaneous
linear equations which are composed of Eq. (15.2) and initial conditions:

P1 J2] PM(N+2)
pi+m ¢1 P2+ (I)Z T Puvea)tm ¢M (N+2) e 0
Pw(x+2) . _
P +'1\ ¢1 pz+rw ¢2 T Puva) iy ¢M (N+2) : - 0 ) (18)
¢1 ¢2 s ¢M (N+2) CM(N+2) Y(0)
pi D2 e PM(N+2) x(0)

where the initial conditions are

M(N+2) M(N+2)
> b =x(0), > apid; = x(0) (19)

=1 =1

and contracted notations 7, (k =1,2,...,N) are used in the place of n,’
3.2. Nonlinear analysis

In the geometrically nonlinear analysis, K; are no longer constant but transverse displacement dependent
matrices. Generally, the relaxation develops slowly and therefore Eq. (12) is expanded in nondimensional
relaxation parameters 1. as in Szyszkowski and Glockner (1985), and Cederbaum and Mond (1992):

Mx+ ZQ, /des+ ZZW,Q’/ (r — 5)KXds + O(n*) = 0. (20)

For the sake of brevity, some assumptions are made on the viscoelastic properties. It is assumed that Q; is
independent of time, since the property in the longitudinal direction shows fiber dominant characteristics,
and that the other moduli have the same time function f(¢) as in Lin and Hwang (1989). Moreover, the
standard solid model, which has a single exponential term in Eq. (11) and corresponds to the N = 1 case, is
used as the time function (Chandiramani et al., 1989). Then, the time functions in Eq. (11) are written as

N =1, L0)=f(0) == fs(t) = r+ (1 = r)exp(—n1), (1)

where r is the ratio of initial to final stiffness.

For the approximate solution to Eq. (20), we employ the linear elastic vibration mode as basis. Ac-
cording to the linear viscoelastic analysis in the previous section, there exist N x M purely dissipative modes
that are damped out without vibrating, in addition to the 2M damped vibration mode. Furthermore, these
damped vibration modes have complex values like generally damped structures because of anisotropic
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viscoelasticity. Therefore, this elastic mode based approach is confined to structures that show slightly
viscoelastic properties. However, it is to be noted that isotropically viscoelastic structures always has the
same modes as those of their elastic counterparts due to uniform distribution of damping as in Szyszkowski
and Glockner (1985) and Cederbaum and Mond (1992).

Let
X(1) = dq(1), (22)
where ¢ is the lowest elastic mode shape. They are normalized to have maximum transverse deflection of
unity.
Substituting Egs. (21) and (22) into Eq. (20) and pre-multiplying it by ¢, one gets
T T 2 T
g+q-+ / (a1q + arg*)gds — 11/ (t —s)(as + asq)gds —&—% / (t —s)’asgds + HOT = 0, (23)
0- 0- 0-
where ay, ..., a4 are constant coefficients.

The solution of Eq. (23) is sought by means of the method of multiple scales (Nayfeh, 1981). In this
paper, perturbation due to nonlinearity and dissipation is parameterized by the normalized amplitude and
relaxation parameter respectively, and it is assumed that the amplitude-to-thickness ratio is small and the
viscoelastic behavior develops slowly. Furthermore, different time scales are introduced to obtain uniform
expansions by avoiding secular terms that appear in single time scale expansions and increase infinitely with
time. Now, the solution to Eq. (23) can be written as follows:

q(To, T, T, T3, T, T, ...) = e(q1 + eq2 + 0g3 + €°qa + engs + 11°qe + - ), (24)
where ¢ denotes a small parameter that is a measure of the amplitude of oscillation, and different time scales
are defined by

Order 0: Ty = 1,

Order 1: T} = ¢t, Th = g7, (25)

Order 2: Ty = &1, T, = ent, Ts = n*t.

One can see that g3, gs, g6 in Eq. (24) and the time scale 7, reflect the interaction between the large am-

plitude and the viscoelastic behavior. Substituting Eq. (24) into Eq. (23) and collecting terms of like powers
of ¢ and 7, the following equations are obtained through integration by parts:

Order 1: ¢;Diq; + ¢, =0, (26.1)
Order 2: & D2gs + > + 2DoDyqy + %qf -0, (26.2)
811;D(2)q3 + q3 + 2DOD2q1 — a3/ q1 ds = 0, (263)
0
a
Order 3: SS;D%)CM + qa + 2DOD1q2 + 2DOD36[1 + D%ql + aiqiq: + §2q'14 = 0, (264)

&1, Dygs + gs + 2DyDig3 + 2DogDaqs + 2DoDagqy + 2D\ Dagqy — as / g, ds
0

ay

——/ qids =0, (26.5)
2 Jo

Snz;DéQ6 —+ e =+ 2DOD2q3 —+ 2D0D56]1 +D§q1 — aj </ q3 dS — / /(h deS) = 0, (266)
0 0

where D,, denotes the partial derivative with respect to 7,,.
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One can solve Egs. (26.1)—(26.6) in succession for g1, . .., ¢s. The solution of Eq. (26.1) can be expressed
in the following form:

q1 = A(Tl, ey T5) exp(iTo) +A*(T1, ey T5) CXp(—iTo), (27)

where A* means the complex conjugate of 4. The detailed expression for the coefficient 4 on each time scale
are determined from the conditions that ¢, ..., ¢ have uniform expansion with respect to time. These
conditions are obtained in the course of solving Egs. (26.1)—(26.6) sequentially by eliminating terms that
cause resonance:

DA =0, (28.1)
DoA + %A ~0, (28.2)
1 5 2 2 g%
DOD3A + g ay; — gal A°A* = O, (283)
Dyd =0, (28.4)
i 3
D5A + z 1-— §a3 a3A =0. (285)

As a result, the dependency of 4 on each time scale is expressed up to the second-order times scale as
follows:

A a [ 242 5 1 3
A= ?0 exp ( — ?3T2> exp {1{ TO <a2 — 6af) exp(—ash)Ts — 3 (1 8a3>a3T5 +BOH, (29)

where Ay and B, are real constants and determined from initial conditions. Recovering the original variable
7 instead of different time scales, one obtains

q1 = Ao exp(—{t) cos(wt + By), (30.1)
1

g = EAéal exp(—2{t){cos(2wt + 2By) — 3}, (30.2)

g =0, (30.3)

where the exponential decay ratio { and nonlinear damped frequency w are defined by

C:_Vh

1 3 242 5
o=1 -3 (1 - §a3>a3n2 +TO (az —gaf) exp ( — asnr).

From Egs. (28.4) and (30.3), one finds that the amplitude measure parameter ¢ is decoupled with the re-
laxation parameter #. This means that dissipation characteristics are not affected by the magnitude of vi-
bration amplitude within this expansion order. For the decay ratio in Eq. (31) is also independent of
amplitude, the nonlinear effect is more to be considered for the frequency analysis rather than for the
magnitude analysis in the nonlinear analysis. Coupled effect of ¢ and # is to be determined by investigating
the dependence on higher time scales such as ¢?5t,ey’t, ... Thus, the linear viscoelastic analysis and geo-
metrically nonlinear analysis can be performed separately within a certain range of ¢ and #, that is to be
investigated in the subsequent section through examples. It is interesting to note that the decay ratio and
damped frequency have linear and quadratic dependence on 5 respectively.

(31)
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4. Numerical examples and discussion

In the finite element analysis, the 16-node Lagrangian rectangular element is employed for discretization
and 5 x 5 meshes over the whole domain are used after a convergence study, which is omitted in this paper
for brevity. In addition to the simply supported immovable boundary condition, the following material
properties are used for the numerical examples:

1.80 —

oNUeLY

1.40 —

oNUPLU

Fig. 2. Nonlinear to linear frequency ratio versus amplitude-to-thickness ratio: (a) [0°/90°], (b) [45°/—45°]; AR =1, SR = 100, pure
elastic case (n = 0), (—) present, (- - -) Singh et al.
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E1(0)/E>(0) =40,  G1»(0)/E>(0) = G13(0)/E5(0) = 0.5,  G(0)/E2(0) = 0.2, vi5(0) = 0.25,
K=5/6, r=04.

To examine the degree of error in the approximate solution Eq. (31) according to the magnitude of the
small parameters, comparison work is done respectively for the elastic nonlinear case, or # = 0, in Fig. 2
and the viscoelastic linear case, or ¢ ~ 0, in Fig. 3. The fundamental nonlinear (wny) to linear undamped
frequency ratio is plotted against the amplitude-to-thickness ratio in Fig. 2 for [0°/90°] and [45°/—45 °] lay-
ups, where AR and SR mean aspect ratio (//b) and slenderness ratio (/h) respectively. Frequency ratio is

1.00

0.98 —

o /oLy

0.96 —

094 . ‘ r
0.00 0.20 0.40 0.60 0.80 1.00

1.00

0.98 —

o p/oLy

0.96 —

0.94 T ] T ] T [ T [ T
0.00 0.20 0.40 0.60 0.80 1.00
n

Fig. 3. Frequency reduction due to viscoelasticity: (a) [0°/90°], (b) [45°/—45°]; AR =1, SR = 100, linear case (¢ ~ 0), (—) present,
(- --) Eq. (17).
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obtained by means of Eq. (31) in the case of n = 0, and it is compared with Singh et al. (1995), where the
direct integration method is applied. It seems that at the amplitude-to-thickness ratio smaller than 0.5, the
present approach gives reasonable values for both lay-ups. Frequency reduction due to viscoelastic dam-
ping is shown in Fig. 3, where the ordinate denotes ratio of linear damped (w;p) to undamped frequency.
This is obtained from Eq. (31) for the viscoelastic linear case (¢ =~ 0). To check the convergence of the
results, the eigenvalue problem Eq. (17), that is applicable for general linear viscoelastic structures without
limitation on the magnitude of the relaxation parameter #, is solved to obtain the linear damped frequency.
Both lay-ups show similar rate of frequency change with respect to the relaxation parameter, and the results
are expected to be acceptable at # smaller than 0.4 under the present expansion order. In addition, variation

0.03
(a)
0.02 —
0.02 —
A, ~
n
0.01 -
0.01 4
e
0.00 : | . | : T . I
0.00 10.00 20.00 30.00 40.00
0
1.0000
£
0.9980 —¢ .
j
e..)
8 |
[a)
_1
3
0.9960 —|
0.9940 T 1 | [ , I r |
0.00 10.00 20.00 30.00 40.00

0

Fig. 4. Variation of decay ratio and frequency according to the layer angle: (a) decay ratio (b) frequency ratio; AR = 1, SR = 100,
linear case (¢ ~ 0), 7: (O) 0.1; (O) 0.2; (¢) 0.3; (—) present, (- - -) Eq. (17).
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in the decay ratio and linear damped to undamped frequency ratio are plotted respectively against the layer
angle in Fig. 4 for two-layer angle plies that have the layer configuration of [0°/—0°], using Eq. (31).
Comparison with Eq. (17) is made for frequency only, because, as mentioned in Section 3.2, linear analysis
gives M x N (N = 1, in these examples) more eigenvalues that are purely real and so damped out without
oscillation, beside M damped vibration modes. Therefore, the decay ratio in Eq. (31) can be understood as
a value that assets dissipative behavior of the same vibration mode as a whole. It is observed that the

3
0.96 T T T T T I T T T
0.00 40.00 80.00 120.00 160.00 200.00
T
112
(b)
E
1.08 —
8
8 1.04 —
1.00 —
0.96 T T T T T T T T T
0.00 40.00 80.00 120.00 160.00 200.00

T

Fig. 5. Frequency history of the nonlinear viscoelastic vibration: (a) [0°/90°], (b) [45°/~45°); AR = 1, SR = 100, wo /A: (- - -) 0.3; (—)
0.4; 2 (0) 0.2; ([O) 0.3.
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Fig. 6. Response at the central point of the plate: [0°/90°], AR = 1, SR = 100, wy/h = 0.4, n = 0.3, (—) nonlinear, (- - -) linear.

dissipation nature becomes more sensitive to the layer orientation as # is increased, or the material is more
viscoelastic. It is also shown that the viscoelastic effect is most remarkable around 6 = 20° and least around
0 =0° In Fig. 5, the effect of nonlinearity and viscoelasticity is considered simultaneously, where w,
normalized by linear undamped frequency, is obtained from Eq. (31) for certain values of ¢ and 5. The
plates are released at t = 0 with initial transverse displacement w, and velocity zero. By differentiating Eq.
(31) with respect to normalized time, one can easily understand that the decay rate of frequency change, or
dw/dz, is proportional to the relaxation parameter and square of the amplitude parameter respectively.
They all converge to each linear damped frequency in the long run. Finally, in Fig. 6, the response at the
center point of the plate is plotted with initial conditions identical to those in Fig. 5 to emphasize that
geometric nonlinearity does not affect dissipative characteristics but changes frequency only.

5. Conclusion

The viscoelastic property of the polymer was considered in geometrically nonlinear analysis of large
amplitude vibration of polymeric composite plates. The effect of geometric nonlinearity on the dissipative
nature was investigated by parameterizing the former as amplitude-thickness ratio and the latter as re-
laxation parameters respectively. It was shown that they are not coupled with each other within perturbed
orders of the parameters, by deriving uncoupled solutions for a simple viscoelastic material model. In this
range of the parameters, nonlinear analysis and viscoelastic analysis can be carried out separately by simply
considering decaying amplitude obtained from the linear viscoelastic analysis into the conventional elastic
nonlinear analysis. Therefore, nonlinear effect is more to be considered for the frequency analysis rather
than for the magnitude analysis. Time dependent frequency history was also examined and the rate of
change of frequency was shown to be proportional to the magnitude of the relaxation parameter and square
of the maximum displacement respectively. Although a simple viscoelastic model was used for material
approximation, this model can roughly simulate the time dependent behavior of polymer based composites.
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