
Nonlinear vibration of viscoelastic laminated composite plates

Tae-Woo Kim, Ji-Hwan Kim *

School of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-ku,

Seoul 151-742, South Korea

Received 1 November 2000; received in revised form 15 November 2001

Abstract

The dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated by

considering the viscoelastic properties of the material. Based on von Karman’s nonlinear deformation theory and

Boltzmann’s superposition principle, nonlinear and hereditary type governing equations are derived through Hamil-

ton’s principle. Finite element analysis and the method of multiple scales are applied to examine the effect of large

amplitude on the dissipative nature as well as on the natural frequency of viscoelastic laminated plates. Numerical

experiments are performed for the nonlinear elastic case and linear viscoelastic case to check the validity of the pro-

cedure presented in this paper. Limitations of the method are discussed also. It is shown that the geometric nonlinearity

does not affect the dissipative characteristics in the cases that have nonlinearity of perturbed order. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

When polymeric matrix based composites are used for structural components such as graphite–epoxy or
glass–epoxy, viscoelastic behavior is expected due to the time dependent properties of the matrix. Especially
in a certain environment of high temperature and/or high moisture, the viscoelastic motion of the polymer
becomes prominent and cannot be neglected in structural analysis. For more accurate prediction of the
structural behavior, many researchers incorporated the time dependent property of the material into their
field of studies. In this study, geometrically nonlinear analysis of a laminated composite plate undergoing
moderately large deflection is carried out considering the time dependent behavior of the polymer matrix. A
lot of literatures are available on the large deflection of the elastic system and most of them treat the
nonlinear to linear frequency ratio at a given deflection order as a main topic. However, very few inves-
tigations have been made to account for the effects of geometric nonlinearity on the damping characteristics
of structures (Sathyamoorthy, 1996). For the viscoelastic system, it is necessary to examine the variation of
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dissipative nature as well as the frequency ratio in the presence of considerable damping due to the vi-
scoelastic material property.

There are a few studies dedicated to geometrically nonlinear analysis of a structure that consider the
viscoelastic material property. Vinogradov (1985) investigated the creep phenomenon of a viscoelastic
column and showed that geometrically nonlinear analysis presents no infinite increase in deflection after
creep buckling, which is not the case in linear analysis. Aboudi (1991) analyzed the postbuckling behavior
of viscoelastic laminated plates. The time dependent postbuckling behavior was presented, and results
based on different theories of plates were compared with one another. Marques and Creus (1992) dealt with
the nonlinear finite element analysis of viscoelastic composite structures considering the effect of moisture
and temperature. Results show the time dependent deflection under mechanical and hygrothermal loads.
Fung et al. (1996) studied the dynamic stability of a viscoelastic beam subjected to harmonic and para-
metric excitations simultaneously, and showed variation of stability boundaries when the nonlinear effect of
deformation is included in the analysis.

In the present study, governing equations are derived from Hamilton’s principle using the von Karman’s
nonlinear theory of plates and Boltzmann’s superposition principle for linear viscoelastic constitutive law.
In addition, the first-order shear deformation is considered in the displacement fields and to express the
viscoelastic material properties, Prony–Dirichlet series are employed for approximation. The nonlinear and
hereditary type governing equations are treated with the finite element method and method of multiple
scales. Verification and limitation of the present approach are discussed by comparing results with those for
nonlinear elastic and linear viscoelastic analysis. It is attempted to solve all coupled equations simulta-
neously, for the hereditary characteristics of the equations make it difficult to decouple the flexure motion.
Numerical examples are presented and discussed as demonstrations.

2. Formulation

Fig. 1 shows the geometric configuration of a rectangular plate undergoing moderately large amplitude
vibration. In the first-order shear deformation theory, the displacement fields are assumed as

u1ðx; y; z; tÞ ¼ uðx; y; tÞ þ zwxðx; y; tÞ;
u2ðx; y; z; tÞ ¼ vðx; y; tÞ þ zwyðx; y; tÞ;
u3ðx; y; z; tÞ ¼ wðx; y; tÞ;

ð1Þ

Fig. 1. Geometric configuration of a laminated composite plate.
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where u1, u2 and u3 are the components of the three-dimensional displacement vector in the x, y and z
directions respectively, while u, v and w denote the displacements at the mid-plane, and wx, wy are the
rotations of the normals to the mid-plane about the y and x axes.

The strain–displacement relations based on von Karman’s theory of plates can be written as

e1 ¼ u;x þ zwx;x þ w2
;x=2;

e2 ¼ v;y þ zwy;y þ w2
;y=2;

e3 ¼ u;y þ v;x þ zðwx;y þ wy;xÞ þ w;xw;y ;

e4 ¼ wy þ w;y ;

e5 ¼ wy þ w;x;

ð2Þ

where contracted notations are used for engineering strains.
As the viscoelastic constitutive law, Boltzmann’s superposition principle for linear viscoelastic behavior

is employed. The stress–strain relation at the kth layer, which has the orientation angle of hk, is given in the
hereditary type form as follows:

rk
i ðtÞ ¼

Z t

0�
Q

k
ijðt � sÞ _eekj ðsÞds; i ¼ 1; 2; . . . ; 5; ð3Þ

where the repeated index stands for the summation rule, and Q
k
ijðtÞ is the relaxation function at the kth layer

referred to x–y coordinates, which are obtained from the axis transformation of the relaxation modulus
QijðtÞ referred to the principal material axes. In terms of generalized displacements and forces, constitutive
relations are written in the following convolution form as in Cederbaum et al. (1991),

Nxx

Nyy

Nxy

Mxx

Myy

Mxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

A11 A12 A13 B11 B12 B13

A22 A23 B12 B22 B23

A33 B13 B23 B33

D11 D12 D13

SYM: D22 D23

D33

2
6666664

3
7777775

�

_uu;x þ w;x _ww;x

_vv;y þ w;y _ww;y

_uu;y þ _vv;x þ _ww;xw;y þ w;x _ww;y
_wwx;x
_wwy;y

_wwx;y þ _wwy;x

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð4Þ

and

Qyy

Qxx

� �
¼ K

A44 A45

A45 A55

� �
�

_wwy þ _ww;y

_wwx þ _ww;x

( )
;

where the overdot stands for the time derivative, � denotes the convolution operator and K is the shear
correction factor.

Time dependent functions AijðtÞ, BijðtÞ and DijðtÞ are defined by

ðAijðtÞ;BijðtÞ;DijðtÞÞ ¼
Z h=2

�h=2
Q

k
ijðtÞð1; z; z2Þdz i; j ¼ 1; 2; 3;

AijðtÞ ¼
Z h=2

�h=2
Q

k
ijðtÞdz i; j ¼ 4; 5:

ð5Þ

The equations of motion are derived from the extended Hamilton’s principle for the nonconservative
system:
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Z t2

t1

ðdT � dUÞdt ¼ 0; ð6Þ

where dT , dU are variations of the kinetic energy and the virtual work by the internal forces respectively as
are given by

dT ¼
Z
Area

fI0ð _uud _uu þ _vvd _vv þ _wwdwÞ þ I2ð _wwx d _wwx þ _wwy d _wwyÞgdxdy;

dU ¼
Z
Area

fNxxðdu;x þ w;xdw;xÞ þ Mxx dwx;x þ Nyyðdv;y þ w;y dw;yÞ þ Myy dwy;y

þ Nxyðdu;y þ dv;x þ w;x dw;y þ w;y dw;xÞ þMxyðdwx;y þ dwy;xÞ
þ Vxðdwx þ dw;xÞ þ Vyðdwy þ dw;yÞgdxdy

ð7Þ

with inertial terms I0, I2, resultant forces Nab, Va and moments Mab for a, b ¼ x, y being defined as

ðI0; I2Þ ¼
Z h=2

�h=2
qð1; z2Þdz;

ðNxx;Nyy ;Nxy ; Vy ; VxÞ ¼
Z h=2

�h=2
ðrk

1; r
k
2; r

k
3; r

k
4; r

k
5Þdz;

ðMxx;Myy ;MxyÞ ¼
Z h=2

�h=2
zðrk

1; r
k
2; r

k
3Þdz:

ð8Þ

We again use contracted notations for stress as in the case of strain.
Interpolating displacement and rotation fields in terms of nodal values and substituting them into Eqs.

(2), (3) and (6), one can obtain the following discretized nonlinear governing equations

M€xxþ
X6
i¼1

Z t

0�
Qiðt � sÞKi _xxds ¼ 0; ð9Þ

where x is the global nodal vector, M is the mass matrix and Ki are the matrices that have stiffness Qi as
coefficients. In addition, contracted indices are used for relaxation moduli referred to the principal material
axes as Q1 ¼ Q11, Q2 ¼ Q12, Q3 ¼ Q22, Q4 ¼ Q33, Q5 ¼ Q44, and Q6 ¼ Q55. In addition, K1; . . . ;K4 are
transverse displacement dependent matrices, while shear deformation dependent matrices K5 and K6 are
constant. They can be written as

Ki ¼ K0
i þ K1

i þ K2
i i ¼ 1; . . . ; 4;

Ki ¼ K0
i i ¼ 5; 6;

ð10Þ

where K0
i is constant and K1

i , K
2
i are the linear and quadratic functions of transverse displacement w re-

spectively.

3. Method of analysis

The relaxation moduli Qij referred to the principal material axes are expressed in terms of Prony–
Dirichlet series, which is one of the most widely used models for approximating the viscoelastic behavior of
a material. Hence, neglecting the variation of temperature and moisture, any relaxation modulus can be
assumed as
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QiðtÞ ¼ Q1
i þ

XNi

j¼1

Qj
i expð�dj

i tÞ ¼ Qið0ÞfiðtÞ for i ¼ 1; 2; . . . ; 6 ðnot summed on iÞ; ð11Þ

where Ni is the number of exponential terms required for approximation, Q1
i the final stiffness of QiðtÞ, Qj

i

constant coefficients, dj
i (>0) relaxation parameters, and fiðtÞ is the time function that yields unity at t ¼ 0

and characterizes the relaxation phenomenon.
Substituting Eq. (11) into Eq. (9), one gets a set of nondimensional equations by introducing parameters

such as u=h, v=h and w=h:

M€xxþ 1

Q1ð0Þ
X6
i¼1

Z s

0�
Qiðs � sÞKi

_xxds ¼ 0; ð12Þ

where the overbar denotes the nondimensional value. Also, nondimensional time is defined by s ¼ xLUt
with xLU meaning the linear undamped frequency.

3.1. Linear analysis

Using the substitution method developed in Muravyov and Hutton (1997), Eq. (12) can be formulated to
the eigenvalue problem through analytical evaluation of the integration term, which is made possible by
introducing exponential series representation for both the relaxation moduli and solution. In other words,
the solution is assumed as

x ¼
XMðNþ2Þ

l¼1

cl/l expðplsÞ; ð13Þ

where M is the number of degrees of freedom, N is the total number of distinct exponential terms used in
moduli approximation, /l is a complex vector, and cl, pl are complex constants. Since Ki are constant
matrices in linear analysis, the integration in Eq. (12) can be calculated analytically by substituting Eqs. (11)
and (13) into Eq. (12). Noting Ki are constant matrices, one obtains

XMðNþ2Þ

l¼1

cl p2lM

("
þ 1

Q1ð0Þ
X6
i¼1

Q1
i Ki

 
þ Qj

iKi

XNi

j¼1

pl

pl þ gj
i

!)
/l expðplsÞ

#
� 1

Q1ð0Þ
XMðNþ2Þ

l¼1

X6
i¼1



XNi

j¼1

clpl

pl þ gj
i

/l expð�gj
isÞ ¼ 0; ð14Þ

where the relaxation parameters are normalized by the corresponding linear undamped frequency, or
gj
i ¼ dj

i =xLU. To satisfy Eq. (14), all coefficients of exponential functions can be set to zero to yield

p2lM

(
þ 1

Q1ð0Þ
X6
i¼1

Q1
i Ki

 
þ Qj

iKi

XNi

j¼1

pl

pl þ gj
i

!)
/l ¼ 0 l ¼ 1; 2; . . . ;MðN þ 2Þ; ð15:1Þ

XMðNþ2Þ

l¼1

clpl

pl þ gj
i

/l ¼ 0 j ¼ 1; 2; . . . ;Ni i ¼ 1; 2; . . . ; 6: ð15:2Þ

The eigenvalue problem is derived from Eq. (15.1) as follows. By multiplying to Eq. (15.1) a common
multiple of denominators of Eq. (15.1), one gets
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p2lM

("
þ 1

Q1ð0Þ
X6
i¼1

Q1
i Ki

)Y6
m¼1

YNm

n¼1

ðpl þ gn
mÞ þ

1

Q1ð0Þ
X6
i¼1

XNi

j¼1

Qj
iKi

Y6
m¼1

YNm

n¼1

pl
pl þ gn

m

pl þ gj
i

( )#
/l

¼ 0 l ¼ 1; 2; . . . ;MðN þ 1Þ: ð16Þ

Denoting the matrix coefficients of pNþ2
l , pNþ1

l ; . . . ; p0l in Eq. (16) as BNþ2;BNþ1; . . . ;B0 respectively, the
eigenvalue problem equivalent to Eq. (16) is obtained as

pl

B1 B2 B3 . . . BNþ2

I 0 0 . . . 0

0 I 0 . . . 0

. . . . . . . . . . . . . . .
0 0 . . . I 0

2
66664

3
77775

0
BBBB@ þ

B0 0 0 . . . 0

0 �I 0 . . . 0

0 0 �I . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . �I

2
66664

3
77775

1
CCCCA

/l

pl/l

p2l /l

..

.

pNþ1
l /l

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ 0: ð17Þ

Now, the total number of MðN þ 2Þ unknowns cl are determined by solving the following simultaneous
linear equations which are composed of Eq. (15.2) and initial conditions:

p1
p1þg1

/1
p2

p2þg1
/2 . . .

pMðNþ2Þ
pMðNþ2Þþg1

/MðNþ2Þ
. . . . . . . . . . . .

p1
p1þgN

/1
p2

p2þgN
/2 . . .

pMðNþ2Þ
pMðNþ2ÞþgN

/MðNþ2Þ

/1 /2 . . . /MðNþ2Þ
p1 p2 . . . pMðNþ2Þ

2
66664

3
77775

c1
..
.

cMðNþ2Þ

8><
>:

9>=
>; ¼

0

..

.

0

xð0Þ
_�xx�xxð0Þ

8>>>><
>>>>:

9>>>>=
>>>>;
; ð18Þ

where the initial conditions are

XMðNþ2Þ

l¼1

cl/l ¼ xð0Þ;
XMðNþ2Þ

l¼1

clpl/l ¼ _�xx�xxð0Þ ð19Þ

and contracted notations gk ðk ¼ 1; 2; . . . ;NÞ are used in the place of gj
i .

3.2. Nonlinear analysis

In the geometrically nonlinear analysis, Ki are no longer constant but transverse displacement dependent
matrices. Generally, the relaxation develops slowly and therefore Eq. (12) is expanded in nondimensional
relaxation parameters gj

i as in Szyszkowski and Glockner (1985), and Cederbaum and Mond (1992):

M€xxþ 1

Q1ð0Þ
X6
i¼1

Qið0Þ
Z s

0�
Ki

_xxds þ 1

Q1ð0Þ
X6
i¼1

XNi

j¼1

gj
iQ

j
i

Z s

0�
ðs � sÞKi

_xxdsþ Oðg2Þ ¼ 0: ð20Þ

For the sake of brevity, some assumptions are made on the viscoelastic properties. It is assumed that Q1 is
independent of time, since the property in the longitudinal direction shows fiber dominant characteristics,
and that the other moduli have the same time function f ðtÞ as in Lin and Hwang (1989). Moreover, the
standard solid model, which has a single exponential term in Eq. (11) and corresponds to the N ¼ 1 case, is
used as the time function (Chandiramani et al., 1989). Then, the time functions in Eq. (11) are written as

f1ðtÞ ¼ 1; f2ðtÞ ¼ f3ðtÞ ¼ � � � ¼ f6ðtÞ ¼ r þ ð1� rÞ expð�gtÞ; ð21Þ

where r is the ratio of initial to final stiffness.
For the approximate solution to Eq. (20), we employ the linear elastic vibration mode as basis. Ac-

cording to the linear viscoelastic analysis in the previous section, there exist N 
 M purely dissipative modes
that are damped out without vibrating, in addition to the 2M damped vibration mode. Furthermore, these
damped vibration modes have complex values like generally damped structures because of anisotropic
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viscoelasticity. Therefore, this elastic mode based approach is confined to structures that show slightly
viscoelastic properties. However, it is to be noted that isotropically viscoelastic structures always has the
same modes as those of their elastic counterparts due to uniform distribution of damping as in Szyszkowski
and Glockner (1985) and Cederbaum and Mond (1992).

Let

xðsÞ ¼ /qðsÞ; ð22Þ

where / is the lowest elastic mode shape. They are normalized to have maximum transverse deflection of
unity.

Substituting Eqs. (21) and (22) into Eq. (20) and pre-multiplying it by /T, one gets

€qq þ q þ
Z s

0�
ða1q þ a2q2Þ _qqds� g

Z s

0�
ðs � sÞða3 þ a4qÞ _qqds þ

g2

2

Z s

0�
ðs � sÞ2a3 _qqds þHOT ¼ 0; ð23Þ

where a1; . . . ; a4 are constant coefficients.
The solution of Eq. (23) is sought by means of the method of multiple scales (Nayfeh, 1981). In this

paper, perturbation due to nonlinearity and dissipation is parameterized by the normalized amplitude and
relaxation parameter respectively, and it is assumed that the amplitude-to-thickness ratio is small and the
viscoelastic behavior develops slowly. Furthermore, different time scales are introduced to obtain uniform
expansions by avoiding secular terms that appear in single time scale expansions and increase infinitely with
time. Now, the solution to Eq. (23) can be written as follows:

qðT0; T1; T2; T3; T4; T5; . . .Þ ¼ eðq1 þ eq2 þ gq3 þ e2q4 þ egq5 þ g2q6 þ � � �Þ; ð24Þ

where e denotes a small parameter that is a measure of the amplitude of oscillation, and different time scales
are defined by

Order 0: T0 ¼ s;

Order 1: T1 ¼ es; T2 ¼ gs;

Order 2: T3 ¼ e2s; T4 ¼ egs; T5 ¼ g2s:

ð25Þ

One can see that q3, q5, q6 in Eq. (24) and the time scale T4 reflect the interaction between the large am-
plitude and the viscoelastic behavior. Substituting Eq. (24) into Eq. (23) and collecting terms of like powers
of e and g, the following equations are obtained through integration by parts:

Order 1: e;D2
0q1 þ q1 ¼ 0; ð26:1Þ

Order 2: e2;D2
0q2 þ q2 þ 2D0D1q1 þ

a1
2

q21 ¼ 0; ð26:2Þ

eg;D2
0q3 þ q3 þ 2D0D2q1 � a3

Z s

0

q1 ds ¼ 0; ð26:3Þ

Order 3: e3;D2
0q4 þ q4 þ 2D0D1q2 þ 2D0D3q1 þ D2

1q1 þ a1q1q2 þ
a2
3

q31 ¼ 0; ð26:4Þ

e2g;D2
0q5 þ q5 þ 2D0D1q3 þ 2D0D2q2 þ 2D0D4q1 þ 2D1D2q1 � a3

Z s

0

q2 ds

� a4
2

Z s

0

q21 ds ¼ 0; ð26:5Þ

eg2;D2
0q6 þ q6 þ 2D0D2q3 þ 2D0D5q1 þ D2

2q1 � a3

Z s

0

q3 ds
!

�
Z s

0

Z
q1 dsds

"
¼ 0; ð26:6Þ

where Dm denotes the partial derivative with respect to Tm.
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One can solve Eqs. (26.1)–(26.6) in succession for q1; . . . ; q6. The solution of Eq. (26.1) can be expressed
in the following form:

q1 ¼ AðT1; . . . ; T5Þ expðiT0Þ þ A�ðT1; . . . ; T5Þ expð�iT0Þ; ð27Þ

where A� means the complex conjugate of A. The detailed expression for the coefficient A on each time scale
are determined from the conditions that q2; . . . ; q6 have uniform expansion with respect to time. These
conditions are obtained in the course of solving Eqs. (26.1)–(26.6) sequentially by eliminating terms that
cause resonance:

D1A ¼ 0; ð28:1Þ

D2A þ a3
2

A ¼ 0; ð28:2Þ

D0D3A þ 1

8
a2

!
� 5

6
a2
1

"
A2A� ¼ 0; ð28:3Þ

D4A ¼ 0; ð28:4Þ

D5A þ i

2
1

!
� 3

8
a3

"
a3A ¼ 0: ð28:5Þ

As a result, the dependency of A on each time scale is expressed up to the second-order times scale as
follows:

A ¼ A0

2
exp

#
� a3

2
T2

$
exp i

e2A2
0

8
a2

!��
� 5

6
a21

"
exp ð � a3T2ÞT3 �

1

2
1

!
� 3

8
a3

"
a3T5 þ B0

��
; ð29Þ

where A0 and B0 are real constants and determined from initial conditions. Recovering the original variable
s instead of different time scales, one obtains

q1 ¼ A0 expð�fsÞ cosðxs þ B0Þ; ð30:1Þ

q2 ¼
1

12
A2
0a1 expð�2fsÞfcosð2xs þ 2B0Þ � 3g; ð30:2Þ

q3 ¼ 0; ð30:3Þ

where the exponential decay ratio f and nonlinear damped frequency x are defined by

f ¼ a3
2

g;

x ¼ 1� 1

2
1

!
� 3

8
a3

"
a3g2 þ e2A2

0

8
a2

!
� 5

6
a21

"
exp ð � a3gsÞ:

ð31Þ

From Eqs. (28.4) and (30.3), one finds that the amplitude measure parameter e is decoupled with the re-
laxation parameter g. This means that dissipation characteristics are not affected by the magnitude of vi-
bration amplitude within this expansion order. For the decay ratio in Eq. (31) is also independent of
amplitude, the nonlinear effect is more to be considered for the frequency analysis rather than for the
magnitude analysis in the nonlinear analysis. Coupled effect of e and g is to be determined by investigating
the dependence on higher time scales such as e2gs; eg2s; . . . Thus, the linear viscoelastic analysis and geo-
metrically nonlinear analysis can be performed separately within a certain range of e and g, that is to be
investigated in the subsequent section through examples. It is interesting to note that the decay ratio and
damped frequency have linear and quadratic dependence on g respectively.
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4. Numerical examples and discussion

In the finite element analysis, the 16-node Lagrangian rectangular element is employed for discretization
and 5
 5 meshes over the whole domain are used after a convergence study, which is omitted in this paper
for brevity. In addition to the simply supported immovable boundary condition, the following material
properties are used for the numerical examples:

Fig. 2. Nonlinear to linear frequency ratio versus amplitude-to-thickness ratio: (a) ½0�=90�
, (b) [45�=�45�]; AR ¼ 1, SR ¼ 100, pure

elastic case (g ¼ 0), (––) present, ð- - -Þ Singh et al.
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E1ð0Þ=E2ð0Þ ¼ 40; G12ð0Þ=E2ð0Þ ¼ G13ð0Þ=E2ð0Þ ¼ 0:5; G23ð0Þ=E2ð0Þ ¼ 0:2; m12ð0Þ ¼ 0:25;

K ¼ 5=6; r ¼ 0:4:

To examine the degree of error in the approximate solution Eq. (31) according to the magnitude of the
small parameters, comparison work is done respectively for the elastic nonlinear case, or g ¼ 0, in Fig. 2
and the viscoelastic linear case, or e � 0, in Fig. 3. The fundamental nonlinear (xNU) to linear undamped
frequency ratio is plotted against the amplitude-to-thickness ratio in Fig. 2 for ½0�=90�
 and [45�=�45 �] lay-
ups, where AR and SR mean aspect ratio ðl=bÞ and slenderness ratio ðl=hÞ respectively. Frequency ratio is

Fig. 3. Frequency reduction due to viscoelasticity: (a) ½0�=90�
, (b) [45�=�45�]; AR ¼ 1, SR ¼ 100, linear case (e � 0), (––) present,

ð- - -Þ Eq. (17).
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obtained by means of Eq. (31) in the case of g ¼ 0, and it is compared with Singh et al. (1995), where the
direct integration method is applied. It seems that at the amplitude-to-thickness ratio smaller than 0.5, the
present approach gives reasonable values for both lay-ups. Frequency reduction due to viscoelastic dam-
ping is shown in Fig. 3, where the ordinate denotes ratio of linear damped (xLD) to undamped frequency.
This is obtained from Eq. (31) for the viscoelastic linear case (e � 0). To check the convergence of the
results, the eigenvalue problem Eq. (17), that is applicable for general linear viscoelastic structures without
limitation on the magnitude of the relaxation parameter g, is solved to obtain the linear damped frequency.
Both lay-ups show similar rate of frequency change with respect to the relaxation parameter, and the results
are expected to be acceptable at g smaller than 0.4 under the present expansion order. In addition, variation

Fig. 4. Variation of decay ratio and frequency according to the layer angle: (a) decay ratio (b) frequency ratio; AR ¼ 1, SR ¼ 100,

linear case (e � 0), g: ( ) 0.1; ( ) 0.2; ( ) 0.3; (––) present, ð- - -Þ Eq. (17).
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in the decay ratio and linear damped to undamped frequency ratio are plotted respectively against the layer
angle in Fig. 4 for two-layer angle plies that have the layer configuration of [h�=�h�], using Eq. (31).
Comparison with Eq. (17) is made for frequency only, because, as mentioned in Section 3.2, linear analysis
gives M 
 N (N ¼ 1, in these examples) more eigenvalues that are purely real and so damped out without
oscillation, besideM damped vibration modes. Therefore, the decay ratio in Eq. (31) can be understood as
a value that assets dissipative behavior of the same vibration mode as a whole. It is observed that the

Fig. 5. Frequency history of the nonlinear viscoelastic vibration: (a) ½0�=90�
, (b) [45�=�45�]; AR ¼ 1, SR ¼ 100, w0=h: ð- - -Þ 0.3; (––)
0.4; g: ( ) 0.2; ( ) 0.3.
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dissipation nature becomes more sensitive to the layer orientation as g is increased, or the material is more
viscoelastic. It is also shown that the viscoelastic effect is most remarkable around h ¼ 20� and least around
h ¼ 0�. In Fig. 5, the effect of nonlinearity and viscoelasticity is considered simultaneously, where x,
normalized by linear undamped frequency, is obtained from Eq. (31) for certain values of e and g. The
plates are released at s ¼ 0 with initial transverse displacement w0 and velocity zero. By differentiating Eq.
(31) with respect to normalized time, one can easily understand that the decay rate of frequency change, or
dx=ds, is proportional to the relaxation parameter and square of the amplitude parameter respectively.
They all converge to each linear damped frequency in the long run. Finally, in Fig. 6, the response at the
center point of the plate is plotted with initial conditions identical to those in Fig. 5 to emphasize that
geometric nonlinearity does not affect dissipative characteristics but changes frequency only.

5. Conclusion

The viscoelastic property of the polymer was considered in geometrically nonlinear analysis of large
amplitude vibration of polymeric composite plates. The effect of geometric nonlinearity on the dissipative
nature was investigated by parameterizing the former as amplitude–thickness ratio and the latter as re-
laxation parameters respectively. It was shown that they are not coupled with each other within perturbed
orders of the parameters, by deriving uncoupled solutions for a simple viscoelastic material model. In this
range of the parameters, nonlinear analysis and viscoelastic analysis can be carried out separately by simply
considering decaying amplitude obtained from the linear viscoelastic analysis into the conventional elastic
nonlinear analysis. Therefore, nonlinear effect is more to be considered for the frequency analysis rather
than for the magnitude analysis. Time dependent frequency history was also examined and the rate of
change of frequency was shown to be proportional to the magnitude of the relaxation parameter and square
of the maximum displacement respectively. Although a simple viscoelastic model was used for material
approximation, this model can roughly simulate the time dependent behavior of polymer based composites.

Fig. 6. Response at the central point of the plate: ½0�=90�
, AR ¼ 1, SR ¼ 100, w0=h ¼ 0:4, g ¼ 0:3, (––) nonlinear, ð- - -Þ linear.
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